
P a g e | 65

FCPIT VDS Saini

11. Classes and Objects

11.1 Defining classes and declaring objects

C++ Class Definitions:

When you define a class, you define a blueprint for a data type. This doesn't actually define
any data, but it does define what the class name means, that is, what an object of the class
will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class
body, enclosed by a pair of curly braces. A class definition must be followed either by a
semicolon or a list of declarations. For example, we defined the Box data type using the
keyword class as follows:
class Box
{

public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class that
follow it. A public member can be accessed from outside the class anywhere within the
scope of the class object. You can also specify the members of a class
as private or protected which we will discuss in a sub-section.

Define C++ Objects:
A class provides the blueprints for objects, so basically an object is created from a class. We
declare objects of a class with exactly the same sort of declaration that we declare
variables of basic types. Following statements declare two objects of class Box:

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member
access operator (.). Let us try the following example to make the things clear:

#include <iostream.h>
#include<conio.h>

class Box
{

public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

};

P a g e | 66

FCPIT VDS Saini

int main()
{

Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

// box 2 specification
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;
// volume of box 1
volume = Box1.height * Box1.length * Box1.breadth;
cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2
volume = Box2.height * Box2.length * Box2.breadth;
cout << "Volume of Box2 : " << volume <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly
using direct member access operator (.). We will learn how private and protected members
can be accessed.

11.2 public and private keywords

Data hiding is one of the important features of Object Oriented Programming which allows
preventing the functions of a program to access directly the internal representation of a
class type. The access restriction to the class members is specified by the labeled public,
private, and protected sections within the class body. The keywords public, private, and
protected are called access specifiers.

A class can have multiple public, protected, or private labeled sections. Each section
remains in effect until either another section label or the closing right brace of the class
body is seen. The default access for members and classes is private.

class Base {

public:

// public members go here

protected:

// protected members go here

P a g e | 67

FCPIT VDS Saini

private:

// private members go here

};

The public members:
A public member is accessible from anywhere outside the class but within a program. You
can set and get the value of public variables without any member function as shown in the
following example:

#include <iostream.h>
#include<conio.h>

class Line
{

public:
double length;
void setLength(double len);
double getLength(void);

};

// Member functions definitions
double Line::getLength(void)
{

return length ;
}

void Line::setLength(double len)
{

length = len;
}

// Main function for the program
int main()
{

Line line;

// set line length
line.setLength(6.0);
cout << "Length of line : " << line.getLength() <<endl;

// set line length without member function
line.length = 10.0; // OK: because length is public
cout << "Length of line : " << line.length <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following result:
Length of line : 6
Length of line : 10

The private members:

P a g e | 68

FCPIT VDS Saini

A private member variable or function cannot be accessed, or even viewed from outside
the class. Only the class and friend functions can access private members.

By default all the members of a class would be private, for example in the following
class width is a private member, which means until you label a member, it will be assumed
a private member:

class Box
{

double width;
public:

double length;
void setWidth(double wid);
double getWidth(void);

};

Practically, we define data in private section and related functions in public section so that
they can be called from outside of the class as shown in the following program.

#include <iostream.h>
#include<conio.h>

class Box
{

public:
double length;
void setWidth(double wid);
double getWidth(void);

private:
double width;

};

// Member functions definitions
double Box::getWidth(void)
{

return width ;
}

void Box::setWidth(double wid)
{

width = wid;
}

// Main function for the program
int main()
{

Box box;

// set box length without member function
box.length = 10.0; // OK: because length is public
cout << "Length of box : " << box.length <<endl;

// set box width without member function
// box.width = 10.0; // Error: because width is private
box.setWidth(10.0); // Use member function to set it.
cout << "Width of box : " << box.getWidth() <<endl;

P a g e | 69

FCPIT VDS Saini

return 0;
}

When the above code is compiled and executed, it produces the following result:
Length of box : 10
Width of box : 10

11.3 Constructors and Destructors

The Class Constructor:
A class constructor is a special member function of a class that is executed whenever we
create new objects of that class.
A constructor will have exact same name as the class and it does not have any return type
at all, not even void. Constructors can be very useful for setting initial values for certain
member variables.

Following example explains the concept of constructor:
#include <iostream.h>
#include<conio.h>

class Line
{

public:
void setLength(double len);
double getLength(void);
Line(); // This is the constructor

private:
double length;

};

// Member functions definitions including constructor
Line::Line(void)
{

cout << "Object is being created" << endl;
}

void Line::setLength(double len)
{

length = len;
}

double Line::getLength(void)
{

return length;
}
// Main function for the program
int main()
{

Line line;

// set line length
line.setLength(6.0);
cout << "Length of line : " << line.getLength() <<endl;

P a g e | 70

FCPIT VDS Saini

return 0;
}

When the above code is compiled and executed, it produces the following result:
Object is being created
Length of line : 6

Parameterized Constructor:
A default constructor does not have any parameter, but if you need, a constructor can have
parameters. This helps you to assign initial value to an object at the time of its creation as
shown in the following example:

#include <iostream.h>
#include<conio.h>

class Line
{

public:
void setLength(double len);
double getLength(void);
Line(double len); // This is the constructor

private:
double length;

};

// Member functions definitions including constructor
Line::Line(double len)
{

cout << "Object is being created, length = " << len << endl;
length = len;

}

void Line::setLength(double len)
{

length = len;
}

double Line::getLength(void)
{

return length;
}
// Main function for the program
int main()
{

Line line(10.0);

// get initially set length.
cout << "Length of line : " << line.getLength() <<endl;
// set line length again
line.setLength(6.0);
cout << "Length of line : " << line.getLength() <<endl;
return 0;

}

P a g e | 71

FCPIT VDS Saini

When the above code is compiled and executed, it produces the following result:
Object is being created, length = 10
Length of line : 10
Length of line : 6

Using Initialization Lists to Initialize Fields:
In case of parameterized constructor, you can use following syntax to initialize the fields:

Line::Line(double len): length(len)
{

cout << "Object is being created, length = " << len << endl;
}

Above syntax is equal to the following syntax:
Line::Line(double len)
{

cout << "Object is being created, length = " << len << endl;
length = len;

}

If for a class C, you have multiple fields X, Y, Z, etc., to be initialized, then use can use same
syntax and separate the fields by comma as follows:
C::C(double a, double b, double c): X(a), Y(b), Z(c)
{

....
}

The Class Destructor:
A destructor is a special member function of a class that is executed whenever an object of
it's class goes out of scope or whenever the delete expression is applied to a pointer to the
object of that class.

A destructor will have exact same name as the class prefixed with a tilde (~) and it can
neither return a value nor can it take any parameters. Destructor can be very useful for
releasing resources before coming out of the program like closing files, releasing memories
etc.

Following example explains the concept of destructor:
#include <iostream.h>
#include<conio.h>

class Line
{

public:
void setLength(double len);
double getLength(void);
Line(); // This is the constructor declaration
~Line(); // This is the destructor: declaration

private:
double length;

};

// Member functions definitions including constructor

P a g e | 72

FCPIT VDS Saini

Line::Line(void)
{

cout << "Object is being created" << endl;
}
Line::~Line(void)
{

cout << "Object is being deleted" << endl;
}

void Line::setLength(double len)
{

length = len;
}

double Line::getLength(void)
{

return length;
}
// Main function for the program
int main()
{

Line line;

// set line length
line.setLength(6.0);
cout << "Length of line : " << line.getLength() <<endl;

return 0;
}

When the above code is compiled and executed, it produces the following result:
Object is being created
Length of line : 6
Object is being deleted

11.4 Defining member functions inside and outside of a class

Member functions of a class can be defined either outside the class definition or inside the
class definition. In both the cases, the function body remains the same, however, the
function header is different.

Outside the Class: Defining a member function outside a class requires the function
declaration (function prototype) to be provided inside the class definition. The member
function is declared inside the class like a normal function. This declaration informs the
compiler that the function is a member of the class and that it has been defined outside
the class. After a member function is declared inside the class, it must be defined (outside
the class) in the program.

The definition of member function outside the class differs from normal function
definition, as the function name in the function header is preceded by the class name and
the scope resolution operator (: :). The scope resolution operator informs the compiler
what class the member belongs to. The syntax for defining a member function outside the
class is

P a g e | 73

FCPIT VDS Saini

Return_type class_name :: function_name (parameter_list)
{
// body of the member function
}

To understand the concept of defining a member function outside a class, consider this
example.

Example : Definition of member function outside the class

class book
{
II body of the class
} :
void book :: getdata(char a[],float b)
{
// defining member function outside the class
strcpy(title,a):
price = b:
}
void book :: putdata ()
{
cout<<"\nTitle of Book: "<<title;
cout<<"\nPrice of Book: "<<price;
}

Note that the member functions of the class can access all the data members and other
member functions of the same class (private, public or protected) directly by using their
names. In addition, different classes can use the same function name.

Inside the Class: A member function of a class can also be defined inside the class.
However, when a member function is defined inside the class, the class name and the
scope resolution operator are not specified in the function header. Moreover, the member
functions defined inside a class definition are by default inline functions.

To understand the concept of defining a member function inside a class, consider this
example.

Example : Definition of a member function inside a class

class book
{
char title[30];
float price;
public:
void getdata(char [],float); II declaration
void putdata()//definition inside the class
{
cout<<"\nTitle of Book: "<<title;
cout<<"\nPrice of Book: "<<price;

P a g e | 74

FCPIT VDS Saini

} ;
In this example, the member function putdata() is defined inside the class book. Hence,
putdata()is by default an inline function.
Note that the functions defined outside the class can be explicitly made inline by prefixing
the keyword inline before the return type of the function in the function header. For
example, consider the definition of the function getdata().

inline void book ::getdata (char a [],float b)
{
body of the function
}

11.5 Accessing members of a class

Accessing Public Data Members:

Following is an example to show you how to initialize and use the public data members
using the dot (.) operator and the respective object of class.

class Student
{
public:
int rollno;
string name;
};

int main()
{
Student A;
Student B;
A.rollno=1;
A.name="Adam";

B.rollno=2;
B.name="Bella";

cout <<"Name and Roll no of A is :"<< A.name << A.rollno;
cout <<"Name and Roll no of B is :"<< B.name << B.rollno;
}

Accessing Private Data Members

To access, use and initialize the private data member you need to create getter and setter
functions, to get and set the value of the data member.

The setter function will set the value passed as argument to the private data member, and
the getter function will return the value of the private data member to be used. Both
getter and setter function must be defined public.

P a g e | 75

FCPIT VDS Saini

Example :

class Student
{
private: // private data member
int rollno;

public: // public accessor and mutator functions
int getRollno()
{
return rollno;
}

void setRollno(int i)
{
rollno=i;
}

};

int main()
{
Student A;
A.rollono=1; //Compile time error
cout<< A.rollno; //Compile time error

A.setRollno(1); //Rollno initialized to 1
cout<< A.getRollno(); //Output will be 1
}
So this is how we access and use the private data members of any class using the getter
and setter methods. We will discuss this in more details later.

11.6 Friend function

A friend function of a class is defined outside that class' scope but it has the right to access
all private and protected members of the class. Even though the prototypes for friend
functions appear in the class definition, friends are not member functions.

A friend can be a function, function template, or member function, or a class or class
template, in which case the entire class and all of its members are friends.

To declare a function as a friend of a class, precede the function prototype in the class
definition with keyword friend as follows:

class Box
{

double width;
public:

P a g e | 76

FCPIT VDS Saini

double length;
friend void printWidth(Box box);
void setWidth(double wid);

};

To declare all member functions of class ClassTwo as friends of class ClassOne, place a
following declaration in the definition of class ClassOne:
friend class ClassTwo;

Consider the following program:

#include <iostream.h>
#include<conio.h>

class Box
{

double width;
public:

friend void printWidth(Box box);
void setWidth(double wid);

};

// Member function definition
void Box::setWidth(double wid)
{

width = wid;
}

// Note: printWidth() is not a member function of any class.
void printWidth(Box box)
{

/* Because printWidth() is a friend of Box, it can
directly access any member of this class */

cout << "Width of box : " << box.width <<endl;
}

// Main function for the program
int main()
{

Box box;

// set box width with member function
box.setWidth(10.0);

// Use friend function to print the wdith.
printWidth(box);

return 0;
}

When the above code is compiled and executed, it produces the following result:
Width of box : 10

